Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38667551

ABSTRACT

The human mandible's cancellous bone, which is characterized by its unique porosity and directional sensitivity to external forces, is crucial for sustaining biting stress. Traditional computer- aided design (CAD) models fail to fully represent the bone's anisotropic structure and thus depend on simple isotropic assumptions. For our research, we use the latest versions of nTOP 4.17.3 and Creo Parametric 8.0 software to make biomimetic Voronoi lattice models that accurately reflect the complex geometry and mechanical properties of trabecular bone. The porosity of human cancellous bone is accurately modeled in this work using biomimetic Voronoi lattice models. The porosities range from 70% to 95%, which can be achieved by changing the pore sizes to 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. Finite element analysis (FEA) was used to examine the displacements, stresses, and strains acting on dental implants with a buttress thread, abutment, retaining screw, and biting load surface. The results show that the Voronoi model accurately depicts the complex anatomy of the trabecular bone in the human jaw, compared to standard solid block models. The ideal pore size for biomimetic Voronoi lattice trabecular bone models is 2 mm, taking in to account both the von Mises stress distribution over the dental implant, screw retention, cortical bone, cancellous bone, and micromotions. This pore size displayed balanced performance by successfully matching natural bone's mechanical characteristics. Advanced FEA improves the biomechanical understanding of how bones and implants interact by creating more accurate models of biological problems and dynamic loading situations. This makes biomechanical engineering better.

2.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630077

ABSTRACT

Pure titanium is limited to be used in biomedical applications due to its lower mechanical strength compared to its alloy counterpart. To enhance its properties and improve medical implants feasibility, advancements in titanium processing technologies are necessary. One such technique is equal-channel angular pressing (ECAP) for its severe plastic deformation (SPD). This study aims to surface modify commercially pure titanium using micro-arc oxidation (MAO) or plasma electrolytic oxidation (PEO) technologies, and mineral solutions containing Ca and P. The composition, metallography, and shape of the changed surface were characterized using X-ray diffraction (XRD), digital optical microscopy (OM), and scanning electron microscope (SEM), respectively. A microhardness test is conducted to assess each sample's mechanical strength. The weight % of Ca and P in the coating was determined using energy dispersive spectroscopy (EDS), and the corrosion resistance was evaluated through potentiodynamic measurement. The behavior of human dental pulp cell and periodontal cell behavior was also studied through a biomedical experiment over a period of 1-, 3-, and 7-days using culture medium, and the cell death and viability can be inferred with the help of enzyme-linked immunosorbent assay (ELISA) since it can detect proteins or biomarkers secreted by cells undergoing apoptosis or necrosis. This study shows that the mechanical grain refinement method and surface modification might improve the mechanical and biomechanical properties of commercially pure (CP) titanium. According to the results of the corrosion loss measurements, 2PassMAO had the lowest corrosion rate, which is determined to be 0.495 mmpy. The electrode potentials for the 1-pass and 2-pass coated samples are 1.44 V and 1.47 V, respectively. This suggests that the coating is highly effective in reducing the corrosion rate of the metallic CP Ti sample. Changes in the grain size and the presence of a high number of grain boundaries have a significant impact on the corrosion resistance of CP Ti. For ECAPED and surface-modified titanium samples in a 3.6% NaCl electrolyte solution, electrochemical impedance spectroscopy (EIS) properties are similar to Nyquist and Bode plot fitting. In light of ISO 10993-5 guidelines for assessing in vitro cytotoxicity, this study contributes valuable insights into pulp and periodontal cell behavior, focusing specifically on material cytotoxicity, a critical factor determined by a 30% decrease in cell viability.

3.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832374

ABSTRACT

Variations in the implant thread shape and occlusal load behavior may result in significant changes in the biological and mechanical properties of dental implants and surrounding bone tissue. Most previous studies consider a single implant thread design, an isotropic bone structure, and a static occlusal load. However, the effects of different thread designs, bone material properties, and loading conditions are important concerns in clinical practice. Accordingly, the present study performs Finite Element Analysis (FEA) simulations to investigate the static, quasi-static and dynamic response of the implant and implanted bone material under various thread designs and occlusal loading directions (buccal-lingual, mesiodistal and apical). The simulations focus specifically on the von Mises stress, displacement, shear stress, compressive stress, and tensile stress within the implant and the surrounding bone. The results show that the thread design and occlusal loading rate have a significant effect on the stress distribution and deformation of the implant and bone structure during clinical applications. Overall, the results provide a useful insight into the design of enhanced dental implants for an improved load transfer efficiency and success rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...